منابع مشابه
Solvation pressure in chloroform.
Molecular dynamics (MD) simulations of chloroform vapor and liquid at normal temperature and pressure and liquid under hydrostatic pressure are presented, giving bond lengths and vibrational frequencies as functions of pressure. The change in bond lengths between vapor and liquid at normal temperature and pressure is consistent with a pressure equivalent to the cohesive energy density (CED) of ...
متن کاملRole of solvation in pressure-induced helix stabilization.
In contrast to the well-known destabilization of globular proteins by high pressure, recent work has shown that pressure stabilizes the formation of isolated α-helices. However, all simulations to date have obtained a qualitatively opposite result within the experimental pressure range. We show that using a protein force field (Amber03w) parametrized in conjunction with an accurate water model ...
متن کاملMagnitude of the solvation pressure depends on dipole potential.
As polar surfaces in solvent are brought together, they experience a large repulsive interaction, termed the solvation pressure. The solvation pressure between rough surfaces, such as lipid bilayers, has been shown previously to decay exponentially with distance between surfaces. In this paper, we compare measured values of the solvation pressure between bilayers and the dipole potential for mo...
متن کاملCorrigendum: The solvation of electrons by an atmospheric-pressure plasma
Solvated electrons are typically generated by radiolysis or photoionization of solutes. While plasmas containing free electrons have been brought into contact with liquids in studies dating back centuries, there has been little evidence that electrons are solvated by this approach. Here we report direct measurements of solvated electrons generated by an atmospheric-pressure plasma in contact wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Crystal Growth & Design
سال: 2020
ISSN: 1528-7483,1528-7505
DOI: 10.1021/acs.cgd.9b01732